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Abstract. The coccolithophore E.huxleyi plays an essential role in the global carbon cycle. Therefore, considering the 

ongoing global warming, the assessment of future changes in coccolithophore blooms is very important. Our paper aims to 

provide a framework for selecting the optimum combination of global climate models to conduct such an assessment. To do 10 

this we analyse the forcing factors influencing present and future blooms using climate model projections. Then, based on 

the projected changes in the forcing factors, future changes in the dynamics of coccolithophore E.huxleyi blooms can be 

determined. 

Here we describe the complex methodology used for the validation of 34 CMIP5 climate models, and the selection of models 

that best represent the regional features of the oceanographic and meteorological factors affecting E.huxleyi blooms in arctic 15 

and subarctic seas: sea surface (i) temperature and (ii) salinity; (iii) wind speed at a height of 10 m above the surface; (iv) 

ocean surface current speed; and (v) surface downwelling shortwave radiation. The validation of the CMIP5 Atmosphere-

Ocean General Circulation Models against reanalysis data includes analysis of the interannual variability, seasonal cycle, 

spatial biases and temporal trends of the simulated forcing factors. Here we propose a percentile score-based model ranking 

method for the selection of the best models from the CMIP5 ensemble. The selection of the best models was performed 20 

separately for each study area in the Barents, Bering, Greenland, Labrador, North and Norwegian Seas and for each of the 

five forcing factors affecting the coccolithophore blooms. In total, 30 combinations of most-skilful models were selected. 

The results show that there is no common optimal combination of models, nor is there one top-model, that has high skill in 

reproducing regional features across the combination of the five considered forcing factors and all arctic and subarctic seas. 

However, some climate models consistently show good skill for many of these combinations e.g. ACCESS1-3; ACCESS1-0; 25 

HadGEM2-AO; HadGEM2-CC; HadGEM2-ES; GFDL-CM3; INMCM4; GISS-E2-R; GISS-E2-R-CC. The models that 

have the smallest skill for the majority of the study regions are CMCC-CM; FGOALS-g2; IPSL-CM5A-LR; IPSL-CM5A-

MR; IPSL-CM5B-LR; MIROC5; MRI-ESM1.  
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1 Introduction 

The coccolithophores contribute significantly to the global carbon and sulphur cycles (Malin et al., 1993; Matrai et al., 1993; 

Rivero-Calle et al., 2015; Winter et al., 2013). Additionally, they contribute to the generation of sulfate aerosols which 

scatter solar radiation in the atmosphere and act as cloud condensation nuclei, enabling cloud formation; therefore, 

coccolithophores are responsible for both warming and cooling effects on the global climate (Charlson et al., 1987; Wang et 5 

al., 2018a, 2018b). Consequently, it is essential to study the dynamics of E.huxleyi blooms. 

E.huxleyi belongs to the group of small phytoplankton with a size of a few µm, and can form extensive blooms covering 

more than 100,000 km2 (Brown and Yoder, 1994; Kondrik et al., 2017; Raitsos et al., 2006). E.huxleyi is a temperature and 

salinity tolerant alga; therefore, it is distributed in the waters of the arctic and subarctic, as well as in equatorial and 

subtropical waters (Fernandes, 2012; Flores et al., 2010; Kondrik et al., 2017; Okada and McIntyre, 1979; Winter, 1994). 10 

Since changes to the regional climate have influenced the ecosystems of the Arctic seas, coccolithophores, particularly 

E.huxleyi, have increasingly expanded their range into polar waters (Henson et al., 2018; Winter et al., 2013). Winter et al. 

(2013) suggest that this poleward expansion of E.huxleyi is driven by changes in water temperature, salinity, or nutrients. 

E.huxleyi blooms have high positive correlation with the following set of parameters: temperature (3-15 ˚C), high light 

intensity (25-150 µmol quanta m2 s-1 or 5-33 W m-2) (Iglesias-Rodríguez et al., 2002) and higher N:P ratio (Lavender et al., 15 

2008). Raitsos et al. (2006) noted that the combination of high solar radiation, increased sea surface temperature, and 

shallow mixed layer depth contributed to the increase in coccolithophores in the North Atlantic region. In addition, wind is 

one of the environmental factors that influences a bloom of coccolithophores by controlling the amount of vertical mixing in 

the subsurface layer; therefore, the decrease in wind stress during summer months results in a decrease in the mixed layer 

depth, and consequently it has a positive effect on E.huxleyi growth (Raitsos et al., 2006). 20 

A detailed analysis of a wide range of forcing factors (FFs) controlling E.huxleyi blooms in arctic and subarctic seas was 

performed using a machine learning method (Kondrik et al., 2019). Kondrik et al. (2019) identified that sea surface 

temperature and salinity, near-surface wind speed at a height of 10 m, shortwave downwelling solar radiation, and ocean 

surface current speed are the most important oceanographic and meteorological factors for the blooming of coccolithophores 

and ranked the degree of their influence for each of the Barents, Bering, Greenland, Labrador, North and Norwegian Seas. 25 

Further, Kondrik et al plan to model the future dynamics of E.huxleyi blooms using the statistical models developed in the 

course of implementing a multifactorial statistical algorithm based on machine learning techniques, described in detail in 

Kondrik et al. (2019). The model-selection procedure and the resultant optimum combinations of CMIP5 models presented 

in this paper will be used as input data for Kondrik et al to model the dynamics of blooms in future scenarios. Therefore, the 

main goal of our study is to validate the ability of CMIP5 climate models to reproduce regional features of the FFs and then 30 

to select the best combination of CMIP5 model ensembles to be used in the modelling of the future dynamics of E.huxleyi 

blooms in six arctic and subarctic seas. 
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It is well established that the ensemble averaging method can be used to reduce the errors, biases and uncertainties in the 

individual climate models (Flato et al., 2013; Gleckler et al., 2008; Knutti et al., 2010a, 2010b; Pierce et al., 2009; Reichler 

and Kim, 2008). The main recommendation from climate model developers, in case it is not possible to calibrate a model for 

a selected region, is to take into consideration more than one climate model (Flato et al., 2013; Gleckler et al., 2008; Knutti 

et al., 2010b; Pierce et al., 2009). There are two main approaches for the use of climate model ensembles: (i) use of the full-5 

ensemble average data (Flato et al., 2013; Gleckler et al., 2008; Knutti et al., 2010b; Reichler and Kim, 2008); and 

(ii) selection of an ensemble of the best models from the full set of available climate models (Herger et al., 2018; Knutti et 

al., 2010b; Taylor, 2001). These two approaches usually give a good result. However, when there are many climate models 

available (e.g., in our study the number of models available varied from 25 to 30 depending on the climate variable), then the 

averaging method will result in a very strong smoothing of the data, the interannual variability will be poorly reproduced, 10 

and only the long-term trend of a given variable will be well captured. Therefore, we chose the second approach – selection 

of climate models that properly simulate the regional features (spatial distribution) of the influencing factors under study (sea 

surface temperature and salinity, surface wind speed at 10 m, ocean surface current speed, and surface downwelling 

shortwave radiation). At that, it was important to define an appropriate methodology for the selection of the best model 

ensembles. 15 

There are many approaches for the selection of an optimal set of climate models. One approach suggests choosing models 

based on the key climatological parameters, e.g., air temperature, precipitation and sea level pressure (Almazroui et al., 

2017; Duan and Phillips, 2010; Pierce et al., 2009; Sarr and Sarr, 2017), believing that if the models skillfully reproduce 

these key parameters, then they also have skill in reproducing the regional climate in general. Another approach which is 

often used is to select a unique combination of models for each parameter (Agosta et al., 2015; Anav et al., 2013; Fu et al., 20 

2013; Gleckler et al., 2008). 

There are many publications which address the selection of climate models, including the application of a ranking method. 

For example, Agosta et al. (2015) ranked the CMIP5 models using only one statistical metric – a climate prediction index 

(ratio of root mean square error to standard deviation of observations). Gleckler et al. (2008) evaluated climate models and 

ranked them analyzing the climatology  of the annual cycle, inter-annual variability, and relative errors. They noted that the 25 

performance of the climate models varies for different parameters. Das et al. (2018) assessed 34 CMIP5 models using three 

criteria: mean seasonal cycle, temporal trends, and spatial correlation, and selected the models using a cumulative ranking 

approach. Fu et al. (2013) and Ruan et al. (2019) applied a score-based method using multiple criteria for the assessment of 

CMIP5 model performance: mean value, standard deviation, normalized root mean square error, linear correlation 

coefficient, Mann-Kendall test statistic Z, Sen’s slope, and significance score. Further, Ruan et al. (2019) selected the top 30 

25% ranked CMIP5 models for the creation of a multi-model ensemble for air temperature projections over the Lower 

Mekong Basin. Fu et al. (2013) and Ruan et al. (2019) ranked models using a weight criterion from 0.5 to 1.0. Ruan et al. 
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(2019) reported that introducing multiple criteria gives less uncertainties in the models’ performance in comparison with 

observation data. 

We consider that applying a score-based method using multiple criteria is most appropriate for our study. Since we deal with 

six arctic and subarctic seas with rather different environmental conditions and a wide range of parameters, it was decided to 

individually analyze each sea. Moreover, we analyzed the model data only for the areas where E.huxleyi blooms were 5 

observed to occur, because we highly prioritized the capability of the models to properly capture the local features in the 

areas of the blooms. 

In the following section, we give a description of the data used and methodology applied for the validation analysis and 

selection of the climate models based on a percentile score-based model ranking for each sea and factor. Section 3 gives a 

detailed example of the applied methodology and contains results and discussions of the selection of the best climate model 10 

ensemble for sea surface temperature in the Barents Sea, along with the overall ranking of models for each considered sea 

and factor. Analysis of the results from our percentile score-based model ranking method are given in the Supplementary 

material (spatial distribution of biases and errors in trends for each sea & FF combination). And finally, Section 4 presents 

the conclusions. 

2 Materials and method 15 

2.1 Data 

As mentioned above, the FFs influencing the blooms of E.huxleyi in arctic and subarctic seas are: sea surface temperature 

(SST) and salinity averaged over 0-30 m (SSS), surface wind speed at a height of 10 m (WS), ocean surface current speed 

(OCS), and shortwave downwelling solar radiation (SDSR). For the selection of the best climate models for reproducing the 

regional features of the distribution of these factors, we used historical projections from Atmosphere-Ocean General 20 

Circulation Models (GCMs) that were carried out in the framework of the CMIP5 project, available from the ESGF portal 

(https://esgf-node.llnl.gov). On the one hand, these models have low resolution (on average it is 150 km), but on the other 

hand, they include both the atmospheric and oceanic components, and cover all studied regions. Whereas the regional 

models have high resolution of 11-25 km (e.g., CORDEX) but simulate only atmosphere or ocean separately, and do not 

cover all six seas within the same model run. In total, we considered 34 GCMs for the historical experiment, but the number 25 

of models available for concrete forcing factors varies. The list of climate models used and their main characteristics are 

presented in Table 1. The atmospheric and oceanic reanalyses data were used for the evaluation and verification of the 

climate model performance: (i) Era-Interim - for surface wind speed at 10 m, sea surface temperature and shortwave 

downwelling solar radiation for the period from 1979 to 2005; (ii) GLORYS2V4 - for sea surface salinity and ocean surface 

current speed for the period from 1993 to 2005. The period for verification of the climate models was chosen based on the 30 

length of the reanalysis data and the limitations from the “historical” runs of the climate models, which usually end in 2005. 
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We used the Era-Interim Reanalysis with the resolution 0.75˚ x 0.75˚ from the European Centre for Medium-Range Weather 

Forecasts (https://apps.ecmwf.int) (Dee et al., 2011). The GLORYS2V4 (Global Ocean Reanalysis and Simulation version 4) 

Reanalysis is available at a global scale (with resolution 1˚ x 1˚) from the European Copernicus Marine Environment 

Monitoring Service (http://marine.copernicus.eu). Selected reanalyses are widely used in the literature and has been shown to 

be consistent with independent observational data (Agosta et al., 2015; Dee et al., 2011; Garric et al., 2017; Geil et al., 2013). 5 

2.2 Study regions and Methods 

Regions under the study are six arctic and subarctic seas: Barents, Bering, Greenland, Labrador, North and Norwegian. The 

areas where E.huxleyi blooms occurred in these regions presented in Fig. 1, showing the number of 8-day periods when 

blooms were observed. Before conducting a selection of climate models, we applied a spatial-coverage mask to confine the 

territories of the study seas where blooms occurred more than one 8-day period during 1998-2016. We focused only on the 10 

periods of E.huxleyi blooms and analysed data for a specific blooming period for each sea with respect to the seasonal 

distribution of the coccolithophore blooms: June-September for the Barents and Labrador seas, January-December for the 

Bering Sea, June-August for the Greenland Sea, May-July for the North Sea, and May-August for the Norwegian Sea 

(Kazakov et al., 2018). Therefore, the selection of the climate models was carried out individually for each sea. 

In order to assess how well CMIP5 climate models reproduce regional features of the FFs distribution they were validated by 15 

means of comparison of model simulations with the reanalysis data. The methodology of the validation of GCMs included 

the analysis of the climatological-mean seasonal cycle and interannual variability of FFs for the blooming period in each sea. 

Seasonal cycle was analysed using multi-year averaged monthly variables for all months of the year (i.e., a sample size of 

12), but interannual variability was analysed based on monthly variables for the blooming periods only (sample size varied 

according to sea and FF combination, e.g., a sample size for SST in the Barents Sea was 108 – monthly variables from June 20 

to September during 1979-2005). Basic statistical measures were used for both analyses: correlation coefficient between 

GCMs and reanalysis (r), root mean square deviation (RMSD), and standard deviation (SD) (Fu et al., 2013; Gleckler et al., 

2008; Kumar et al., 2015; Ruan et al., 2019). Additionally, we calculated RMSD-observations standard deviation ratio (RSR) 

– one of the model evaluation statistics that weighs the simulated data against the observations (Agosta et al., 2015; 

Golmohammadi et al., 2014; Moriasi et al., 2007; Murphy et al., 2004; Stocker, 2004). For the interannual variability 25 

analysis we also calculated the spatial distribution of temporal trends and spatial bias between the model data and reanalysis 

(Anav et al., 2013; Das et al., 2018; Fu et al., 2013; Gleckler et al., 2008; Kumar et al., 2015; Ruan et al., 2019). Further, we 

applied our percentile score-based model ranking method of giving a score to each statistical measure for each model. Figure 

2 shows an example of this approach applied to RMSD of sea surface temperature in the Barents Sea. We divided the 

statistical measures into 4 groups based on the amplitude of the calculated metrics and assigned a score to each model 30 

according to its group: (i) models considered as very good (less than 25%) were assigned a score of 3; (ii) good models 

(between 50% and 25%) were assigned a score of 2; (iii) satisfactory models (between 75% and 50%) were assigned a score 
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of 1; and (iv) unsatisfactory models (more than 75%) were assigned a score of 0. In the case of the correlation coefficient, it 

is vice versa, very good models with correlations scores above 0.75 ranked with a score of 3, and so forth. Finally, we 

summed up the total score for each GCM and selected the optimal ensemble of climate models which we take to be the top 

25% of GCMs ranked according to their total score. This procedure was applied to each factor and study region. 

3 Results and discussion 5 

In this section, we describe the selection of the best GCM ensemble for SST in the Barents Sea as an example of our 

methodology. In addition, we provide final results of the model ranking – the best model ensembles for each considered 

factor and sea. The rest of the obtained results are summarised in the supplementary material. 

Figure 3 shows two Taylor diagrams, which combine the following statistical measures: correlation coefficient (r), standard 

deviation (SD) and root-mean-square deviation (RMSD) on one graph and show how well the simulated data fit the observed 10 

patterns (Taylor, 2001). Figure 3 illustrates that all GCMs capture the seasonal cycle (left) much better than the interannual 

variability (right). The obtained correlation coefficient for all models is more than 0.95 for the seasonal cycle, whereas, for 

the interannual variability it varies from 0.28 to 0.83. Simultaneously, the SD and RMSD have a wide spread of values in 

both cases – SD for the seasonal cycle varies from 0.27 to 2.67 and for the interannual variability – from 0.75 to 2.55, RMSD 

ranges from 0.26 to 5.15 for the seasonal cycle and from 0.98 to 7.06 for the interannual variability. The closer the model 15 

data to the x-axis, the better the correlation coefficient, and the closer the model data to the dotted line (that represents SD of 

the reanalysis), the better the model reproduces the variability of the climate parameter. The closer the model data to the 

reanalysis point, the smaller RMSD that is represented by semicircle lines in Fig. 3. The ranking method was carried out for 

the correlation coefficient in the range from 0 to 1, where the group with the maximum values in the range 0.75-1 was 

assigned the score of 3. 20 

Figure 4 presents the box plots of spatial distribution of SST biases in the bloom area of the Barents Sea for the blooming 

period (June-September) during 1979-2005. For the model ranking, we analysed the absolute values of both median bias and 

the amplitude of the spatial variation in model biases. The median bias varies from 0 to -6.6 K among the models, whereas 

the amplitude bias has a wide spread of values from 10.8 to 19.8 K. We can conclude from Fig. 4 that analysis of spatial 

distribution of biases is very important, e.g., if we compare the model #2 (ACCESS1-3) with the model #3 (CanESM2), we 25 

can see that the medians of these two models have small difference (0.28 K), while, the amplitude of spatial values for the 

model #3 is much higher than for model #2. After the application of the percentile score-based method, the model #2 

(ACCESS1-3) was included into the optimal ensemble, whereas and the model #3 (CanESM2) was not included. 

Box plots of the spatial distribution of annual trends of SST in the Barents Sea are shown in Fig. 5. The median for SST does 

not reveal any trend in the Era-Interim reanalysis, while for the models it varies from -0.02 K yr-1 to 0.18 K yr-1. From Fig. 5 30 

we can conclude that some models show significant trends. Therefore, if these models show an unrealistic trend during the 
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historical period, then they could give higher errors in the projections for the future period. For the ranking of models, we 

analysed the absolute values of differences between model and reanalysis trends, specifically median of the trends and the 

amplitude of the spatial variation in the trends. 

Table 2 presents all calculated statistics that were used to rank GCMs for SST in the Barents Sea as well as the final total 

score for each model. The spread of the total assigned scores is from 9 to 35. Based on this range we selected the top 25% of 5 

GCMs. Thus, the best model ensemble for SST for the Barents Sea is the 8-model set: ACCESS1-0; ACCESS1-3; GFDL-

CM3; HadGEM2-AO; HadGEM2-ES; MIROC-ESM; MIROC-ESM-CHEM; MPI-ESM-LR. Additionally, we identified the 

top-model for SST in this region – MIROC-ESM. 

Figure 6 shows the spatial distribution of biases for SST between models and reanalysis in the bloom area in the Barents Sea 

for the full 28-model ensemble, selected 8-model ensemble, and top-model. As we can see, the full 28-model set 10 

underestimates the SST in the study region while the top-model, MIROC-ESM, overestimates it. The selected 8-model 

ensemble shows smaller biases (± 1 K) in SST for the majority of the bloom area in the Barents Sea. 

The spatial distribution of errors in SST trends between models and reanalysis in the study region is presented in Fig. 7. The 

full 28-model ensemble overestimates trends for the whole study region (model-reanalysis errors are 0.03-0.07 K yr-1), the 

top-model MIROC-ESM partly underestimates the SST trend, but mainly reveals similar to Era-Interim reanalysis 15 

insignificant trends (± 0.01 K yr-1). As for the selected 8-model ensemble, the spatial variability of errors in trends for SST 

varies from -0.01 to 0.06 K yr-1
, although for the major part of the study region the errors are -0.01 to 0.02 K yr-1

.  

SST variability and spatially-averaged annual trends are presented in Fig. 8. As we can see, the full 28-model ensemble 

notably underestimates the interannual variability of SST and shows a significant positive trend (0.04 K yr-1 – statistically 

significant at the level of p < 0.05), while the top-model MIROC-ESM overestimates SST and shows a non-significant 20 

negative trend (-0.005 K yr-1). The optimal 8-model ensemble has better performance in the SST, even though it shows a 

slight positive trend (0.02 K yr-1 – statistically significant at the level of p < 0.05) compared with a non-significant trend in 

the Era-Interim reanalysis– (0.002 K yr-1). 

The selected optimal CMIP5 model ensembles for the other seas and FFs are presented in Fig. 9. The heat map shows the 

final model scores, which represent the results of our percentile score-based model ranking approach. The map summarises 25 

scores for five FFs that influence blooms of E.huxleyi (OCS, SSS, SST, WS, and SDSR) in six arctic and subarctic seas 

(Barents, Bering, Greenland, Labrador, North, and Norwegian). The top 25% of GCMs were selected as the optimal model 

ensemble for each sea and forcing factor combination (total 30 model ensembles: six seas multiplied by five factors).  From 

the heat map we can conclude, that there is no optimal model ensemble, or one top-model, which could properly simulate all 

factors over all study regions. However, some climate models show good results for many cases, e.g., ACCESS1-3; 30 

ACCESS1-0; HadGEM2-AO; HadGEM2-CC; HadGEM2-ES; GFDL-CM3; INMCM4; GISS-E2-R; GISS-E2-R-CC. The 

model that have higher biases across the majority of the study regions are CMCC-CM; FGOALS-g2; IPSL-CM5A-LR; 

IPSL-CM5A-MR; IPSL-CM5B-LR; MIROC5; MRI-ESM1. 
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To examine our percentile score-based model ranking method we analysed the spatial distribution of biases and errors in 

trends for the full-model ensemble, selected best-model ensemble, and top-model vs. reanalysis data for each sea & FF 

combination (see Supplements). In general, the selected best-model ensemble shows better performance than either the full-

model ensemble or the single top-model. The selected best-model ensembles are better in 74% and 83%, equal in 13% and 

10% and worse in 13% and 7% of cases than the full-model ensemble or/and top-model for biases and trends respectively. 5 

4 Conclusions 

A percentile score-based model ranking method has been presented for the selection of the optimal model ensembles, from a 

total of 34 CMIP5 models, for five different climate variables that have previously been identified as influencing E.huxleyi 

blooms (SST, WS, SSS, OCS, SDSR) in six arctic and subarctic seas (Barents, Bering, Labrador, Greenland, North, 

Norwegian). The optimal ensembles for each factor and each sea were selected (in total 30 combinations of most-skilful 10 

models) based on different statistical measures: root mean square error, correlation coefficient, standard deviation, RMSD-

observations standard deviation ratio, spatial biases and trends. Our results show that there is no optimal model ensemble or 

one top-model which could best simulate all factors across all of the study regions. Despite the fact that the Arctic is often 

considered as one single region in many studies, our results show that CMIP5 climate models do not have consistent 

performance across such a large area. However, the selected optimal model ensembles show quite good results with lesser 15 

biases in smaller study regions, i.e., individual Arctic seas. 

Since we plan to apply CMIP5 model projections for the modelling of the dynamics of E.huxleyi blooms in the future, it is 

essential to select climate models that properly simulate the spatial distribution of the FFs. Therefore, we suppose that the 

spatial distribution of biases and trends in FFs are more important in the model selection procedure. From our results we can 

also conclude that it is essential to not only analyse spatially averaged values, but also the amplitude of the spatial 20 

distribution. 

The results of examining of our percentile score-based model ranking method proposed in the paper generally show better 

performance of selected model ensemble vs. full-model ensemble or single best-model for different variables and regions. 

Due to the short sample period of reanalysis data (1979-2005), we did this evaluation without out-of-sample testing. 

Definitely, it is better to test any model ranking method on another historical period. It will be possible to consider the period 25 

1950-2014 with the release of new data, e.g., CMIP6, ERA5.      

We can conclude that a range of different factors are important, including the spatial pattern of model biases, and that 

proposed methodology is one way we could increase the sophistication of model selection procedures to give us a better 

chance at selecting more skillful models for those features in which we are interested. Thus, the proposed method can be 

applied for the analysis in other regions to evaluate climate model performance for various atmospheric and oceanic 30 

parameters at regional scales. 
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Table 1. CMIP5 models used for simulation of forcing factors influencing E.huxleyi blooms (models available for concrete factor are 

marked as “+”) 

Model ID Modelling Center 
(acronym, full name, and country) 

Resolution 
(ºlon x ºlat) 

S
S
T 

W
S 

S
D
S
R 

S 
S 
S 

O
C
S 

ACCESS1.0 1 CSIRO-BOM, Commonwealth Scientific and Industrial 
Research Organisation, Australia and Bureau of 
Meteorology, Australia 

1.25 х 1.875 
+ + + + + 

ACCESS1.3 2 + + + + + 

CanESM2 3 CCCma, Canadian Centre for Climate Modelling and 
Analysis, Canada 

2.7906 х 
2.8125 + +  + + 

CMCC-CM 4 CMCC, Centro euro-Mediterraneo sui Cambiamenti 
Climatici, Italy 

0.7484 х 0.75 + + + + + 

CMCC-CMS 5 3.7111 х 3.75 + + + + + 

CNRM-CM5 6 
CNRM-CERFACS, Centre National de Recherches 
Meteorologiques, France and Centre Europeen de Recherche 
et Formation Avancees en Calcul Scientifique, France 

1.4008 х 
1.40625 + + + + + 

CSIRO-Mk3.6.0 7 
CSIRO-QCCCE, Commonwealth Scientific and Industrial 
Research Organization, Australia and Queensland Climate 
Change Centre of Excellence, Australia 

1.8653 х 1.875  + + + + 

EC-EARTH 8 EC-EARTH, EC-EARTH consortium, Europe 1.1215 х 1.125 +     

GFDL-CM3 9 
NOAA GFDL, National Oceanic and Atmospheric 
Administration, Geophysical Fluid Dynamics Laboratory, 
USA 

2 х 2.5 

+ + + + + 

GFDL-ESM2G 10 + + + + + 

GFDL-ESM2M 11 + + + + + 

GISS-E2-H 12 

NASA GISS, National Aeronautics and Space 
Administration, Goddard Institute for Space Studies, USA 2 х 2.5 

+ + + + + 

GISS-E2-H-CC 13 + + + + + 

GISS-E2-R 14 + + + + + 

GISS-E2-R-CC 15 + + + + + 

HadCM3 16 

MOHC INPE, Met Office Hadley Centre, UK and Instituto 
Nacional de Pesquisas Espaciais, Brasil 

2.5 x 3.75  +    

HadGEM2-AO 17 

1.25 х 1.875 

+ + + + + 

HadGEM2-CC 18 + + + + + 

HadGEM2-ES 19 + + + + + 

IPSL-CM5A-LR 20 IPSL, Institut Pierre-Simon Laplace, France 1.8947 х 3.75 + + + + + 
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IPSL-CM5A-MR 21 + + + + + 

IPSL-CM5B-LR 22 + + + + + 

MIROC5 23 MIROC, Atmosphere and Ocean Research Institute, the 
University of Tokyo, National Institute for Environmental 
Studies, and Japan Agency for Marine-Earth Science and 
Technology, Japan 

1.4008 х 
1.40625 + + + +  

MIROC4h 24 0.5616 x 
0.5625  +    

MIROC-ESM 25 MIROC, Japan Agency for Marine-Earth Science and 
Technology, Atmosphere and Ocean Research Institute, the 
University of Tokyo, and National Institute for 
Environmental Studies, Japan 

2.7906 х 
2.8125 

+ + + +  

MIROC-ESM-CHEM 26 + + + +  

MPI-ESM-LR 27 
MPI-M, Max Planck Institute for Meteorology, Germany 1.8653 х 1.875 

+ + + + + 

MPI-ESM-MR 28 + + + + + 

MRI-CGCM3 29 
MRI, Meteorological Research Institute, Japan 1.12148 х 

1.125 

+ + + + + 

MRI-ESM1 30  +    

NorESM1-M 31 
NCC, Norwegian Climate Centre, Norway 1.8947 х 2.5 

+  + +  

NorESM1-ME 32 +  + + + 

INM-CM4 33 INM, Russian Academy of Sciences Marchuk Institute of 
Numerical Mathematics, Russia 1.5 х 2  + +   

FGOALS-g2 34 LASG-CESS, Institute of Atmospheric Physics, Chinese 
Academy of Sciences; and Tsinghua University, China 

2.7906 x 
2.8125     + 
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Table 2. Results of the CMIP5 model performance for SST in the Barents Sea. 

(Numbers in brackets indicate the models scores. RMSD - root-mean-square deviation; r – correlation coefficient between models and 
reanalysis; RSR – RMSD-observations standard deviation ratio; |SDdif| – modulus of standard deviation difference (model minus 
reanalysis); |Trm| - modulus of spatial trend median difference (model minus reanalysis); |Tra| - modulus of spatial trend amplitude 
difference (model minus reanalysis); |Brm| - modulus of spatial trend median difference (model minus reanalysis); |Bra| – modulus of 5 
spatial biases amplitude difference (model minus reanalysis)). 

Model acronym ID 

Interannual variability 
(averaged over the territory) 

Seasonal cycle 
(averaged over the territory) Spatial trends (Tr) and biases (Br) Total 

score RMSD r RSR |SDdif| RMSD r RSR |SDdif| |Trm| |Tra| |Brm| |Bra| 

ACCESS1-0 1 0,26(3) 0,99(2) 0,13(3) 0,08(3) 1,17(3) 0,68(3) 0,81(3) 0,02(3) 0,06(2) 0,01(3) 0,07(3) 14,7(2) 33 
ACCESS1-3 2 0,37(3) 0,99(3) 0,19(3) 0,03(3) 1,02(3) 0,75(3) 0,71(3) 0,19(3) 0,01(3) 0,01(3) 0,57(3) 16,1(1) 34 
CanESM2 3 1,76(2) 0,98(2) 0,88(2) 0,28(0) 2,21(2) 0,64(3) 1,54(2) 1,12(3) 0,10(1) 0,04(3) 0,85(3) 17,2(1) 24 

CMCC-CM 4 5,15(0) 0,96(1) 2,58(0) 1,73(1) 7,06(0) 0,28(3) 4,90(0) 0,63(0) 0,06(2) 0,18(0) 6,64(0) 13,1(2) 9 

CMCC-CMS 5 4,40(0) 0,97(2) 2,20(0) 1,34(1) 5,94(0) 0,56(3) 4,12(0) 0,59(0) 0,01(3) 0,02(3) 5,58(0) 14,1(2) 14 

CNRM-CM5 6 0,64(3) 0,99(2) 0,32(3) 0,55(1) 1,59(3) 0,73(3) 1,10(3) 0,81(2) 0,08(2) 0,00(3) 0,49(3) 16,4(1) 29 

EC-EARTH 7 0,41(3) 0,99(2) 0,21(3) 0,13(2) 1,43(3) 0,64(3) 0,99(3) 0,38(3) 0,13(1) 0,12(1) 0,14(3) 18,1(0) 27 

GFDL-CM3 8 1,34(3) 0,99(3) 0,67(3) 0,20(3) 1,71(3) 0,80(3) 1,19(3) 0,22(3) 0,00(3) 0,09(1) 1,39(3) 11,1(3) 34 
GFDL-ESM2G 9 3,23(1) 0,98(2) 1,62(1) 0,27(2) 3,72(1) 0,69(3) 2,58(1) 0,29(3) 0,04(3) 0,04(3) 3,46(1) 13,9(2) 23 

GFDL-ESM2M 10 2,60(2) 0,99(2) 1,30(2) 0,61(3) 3,42(2) 0,68(3) 2,37(2) 0,25(2) 0,01(3) 0,08(2) 3,10(2) 15,7(1) 26 

GISS-E2-H 11 3,39(1) 0,97(3) 1,70(1) 0,41(3) 4,09(1) 0,83(3) 2,84(1) 0,18(3) 0,05(2) 0,04(3) 3,86(1) 11,4(3) 25 

GISS-E2-H-CC 12 3,68(1) 0,96(2) 1,84(1) 0,56(3) 4,62(1) 0,72(3) 3,20(1) 0,12(2) 0,03(3) 0,02(3) 4,36(1) 10,8(3) 24 

GISS-E2-R 13 3,34(1) 0,96(2) 1,67(1) 0,04(1) 3,83(1) 0,72(3) 2,66(1) 0,84(3) 0,05(2) 0,07(2) 3,34(1) 15,1(2) 20 

GISS-E2-R-CC 14 3,38(1) 0,96(2) 1,69(1) 0,07(1) 3,78(1) 0,75(3) 2,62(1) 0,83(3) 0,03(3) 0,05(2) 3,29(2) 13,6(2) 22 

HadGEM2-AO 15 1,28(3) 0,99(2) 0,64(3) 0,01(3) 1,51(3) 0,73(3) 1,05(3) 0,13(3) 0,02(3) 0,05(2) 1,33(3) 19,8(0) 31 

HadGEM2-CC 16 1,70(2) 0,99(2) 0,85(2) 0,16(2) 2,34(2) 0,62(3) 1,62(2) 0,35(3) 0,05(2) 0,05(2) 1,66(3) 19,1(0) 25 

HadGEM2-ES 17 0,30(3) 0,99(3) 0,15(3) 0,08(3) 0,98(3) 0,77(3) 0,68(3) 0,00(3) 0,05(2) 0,04(3) 0,09(3) 17,5(1) 33 
IPSL-CM5A-LR 18 3,66(1) 0,98(2) 1,83(1) 0,31(3) 4,59(1) 0,70(3) 3,19(1) 0,18(3) 0,01(3) 0,03(3) 4,32(1) 18,4(0) 22 

IPSL-CM5A-MR 19 2,22(2) 0,99(2) 1,11(2) 0,67(1) 2,57(2) 0,73(3) 1,78(2) 0,80(2) 0,06(2) 0,05(2) 1,91(2) 16,0(1) 23 

IPSL-CM5B-LR 20 5,03(0) 0,96(1) 2,52(0) 1,71(1) 6,90(0) 0,36(3) 4,79(0) 0,69(0) 0,00(3) 0,03(3) 6,51(0) 17,6(0) 11 

MIROC-ESM 21 1,40(3) 0,99(3) 0,70(3) 0,04(3) 1,63(3) 0,82(3) 1,13(3) 0,06(3) 0,01(3) 0,08(2) 1,51(3) 11,8(3) 35 
MIROC-ESM-
CHEM 22 0,97(3) 0,99(3) 0,49(3) 0,05(3) 1,34(3) 0,82(3) 0,93(3) 0,13(3) 0,07(2) 0,05(3) 1,08(3) 15,1(2) 34 

MIROC5 23 2,42(0) 0,98(2) 1,21(0) 0,51(1) 5,69(2) 0,51(3) 3,95(2) 0,64(2) 0,18(0) 0,08(2) 5,14(0) 19,8(0) 14 

MPI-ESM-LR 24 1,27(3) 0,99(3) 0,63(3) 0,04(3) 1,54(3) 0,81(3) 1,07(3) 0,21(3) 0,02(3) 0,04(3) 1,33(3) 16,3(1) 34 
MPI-ESM-MR 25 0,91(3) 0,99(2) 0,45(3) 0,05(3) 1,47(3) 0,71(3) 1,02(3) 0,11(3) 0,05(2) 0,04(3) 0,96(3) 17,2(1) 32 
MRI-CGCM3 26 2,88(2) 0,99(3) 1,44(2) 0,08(2) 2,54(1) 0,82(3) 1,77(1) 0,34(3) 0,00(3) 0,07(2) 2,30(2) 11,9(3) 27 

NorESM1-M 27 1,53(2) 0,99(2) 0,77(2) 0,76(2) 2,56(2) 0,64(3) 1,78(2) 0,31(2) 0,05(2) 0,07(2) 2,33(2) 13,7(2) 25 

NorESM1-ME 28 1,72(2) 0,99(2) 0,86(2) 0,78(2) 2,79(2) 0,57(3) 1,94(2) 0,39(2) 0,02(3) 0,02(3) 2,58(2) 15,0(2) 27 
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Figure 1: Location of the E.huxleyi blooming areas in the study regions. 
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Figure 2: A schematic representation of the percentile score-based model ranking method. 
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Figure 3: Taylor diagrams for the seasonal cycle (left) and interannual variability (right) of SST in the Barents Sea. 

 

 

 5 
Figure 4: Box plots of spatial distribution of SST biases in the Barents Sea. 
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Figure 5: Box plots of spatial distribution of SST trends in the Barents Sea. 
 

 5 
Figure 6: Spatial distribution of biases in SST between models and reanalysis in the bloom area of the Barents Sea for the 

blooming period. 
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Figure 7: Spatial distribution of errors in annual SST trends (model minus reanalysis) in the bloom area of the Barents Sea for the 

blooming period 

 5 

 
Figure 8: SST variability and trends in the Barents Sea for the blooming period over 1979-2005. 
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Figure 9: Heat map with the final model scores obtained using the percentile score-based model ranking method for five forcing 

factors (sea surface temperature (SST) and salinity averaged over 0-30 m (SSS), surface wind speed at 10 m (WS), ocean surface 

current speed (OCS), and shortwave downwelling solar radiation (SDSR) for the Barents, Bering, Greenland, Labrador, North, 

and Norwegian seas. 5 
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1 ACCESS1-3 23 34 33 28 27 30 23 17 27 24 22 31 26 29 31 27 29 18 30 13 29 30 32 23 27 23 32 36 24 25
2 ACCESS1-0 26 33 34 28 27 27 24 26 26 29 18 31 27 27 33 27 26 22 26 20 31 30 30 23 25 28 31 35 25 24
3 CanESM2 25 26 24 29 27 24 26 14 19 15 30 19 16 29 33 9 26 22 34 18 29 22 35 21
4 CMCC-CM 7 26 9 23 21 29 22 25 27 14 21 28 16 27 21 23 30 18 20 14 27 23 25 24 8 13 33 22 30 8
5 CMCC-CMS 16 22 14 24 23 29 23 25 28 15 25 33 32 22 16 25 35 15 21 15 24 19 30 25 13 24 31 36 28 14
6 CNRM-CM5 18 31 29 28 13 31 25 26 30 26 21 32 23 26 19 29 30 30 26 29 23 31 30 28 29 25 34 31 27 25
7 CSIRO-Mk3-6-0 20 23 19 21 21 26 31 14 20 35 26 10 21 27 30 17 23 25 24 16 19 33 15 13
8 EC-EARTH 27 27 35 28 30 36
9 FGOALS-g2 17 4 8 24 11 12

10 GFDL-CM3 20 32 34 27 23 32 20 32 32 26 19 30 32 21 28 27 25 25 28 28 23 19 31 29 22 26 33 36 27 24
11 GFDL-ESM2G 21 30 23 26 26 29 25 20 30 14 24 27 22 30 24 20 27 29 27 21 22 27 32 27 26 26 33 30 26 25
12 GFDL-ESM2M 15 33 26 27 25 32 20 24 29 20 23 33 23 23 18 27 32 24 27 27 24 18 29 28 28 25 33 33 23 27
13 GISS-E2-H 10 29 25 29 12 26 19 29 30 28 16 32 28 28 25 15 15 14 19 28 20 30 32 28 31 17 33 36 19 34
14 GISS-E2-H-CC 14 24 24 30 12 25 21 32 32 26 13 24 25 28 17 18 23 23 18 19 19 31 32 26 29 20 27 35 26 32
15 GISS-E2-R 19 8 20 26 12 28 25 25 32 29 25 29 28 30 22 22 26 27 26 29 23 28 31 29 30 23 32 33 27 34
16 GISS-E2-R-CC 20 9 22 27 11 29 27 28 32 30 24 28 26 30 25 22 22 30 28 28 22 25 30 30 29 24 35 29 27 29
17 HadCM3 16 28 25 27 27 19
18 HadGEM2-AO 26 32 31 30 29 30 28 29 32 30 17 23 27 31 33 19 11 30 28 13 28 30 35 20 28 26 31 34 21 31
19 HadGEM2-CC 22 32 25 30 25 29 26 32 30 29 20 19 31 29 33 22 20 30 30 16 29 31 33 28 31 27 32 35 25 32
20 HadGEM2-ES 21 33 33 27 30 25 24 28 30 27 17 25 28 28 33 25 17 26 29 13 28 26 32 29 30 28 30 33 23 32
21 INMCM4 30 32 26 32 16 33 18 30 23 31 24 28
22 IPSL-CM5A-LR 18 12 22 23 29 30 25 34 27 26 18 29 25 19 25 19 31 23 24 26 22 12 21 13 20 17 29 28 17 25
23 IPSL-CM5A-MR 20 18 23 24 29 33 22 32 31 24 17 28 32 27 27 21 27 25 24 23 25 7 26 23 28 25 31 31 18 27
24 IPSL-CM5B-LR 11 9 11 15 27 33 27 22 31 26 15 11 12 18 13 14 21 31 23 19 21 13 18 14 16 12 13 25 14 22
25 MIROC4h 32 18 28 21 27 28
26 MIROC5 31 14 28 22 14 16 24 31 32 33 28 32 31 19 21 27 25 20 28 25 24 17 25 32
27 MIROC-ESM 31 35 15 26 13 31 33 20 29 22 26 20 30 29 26 9 26 34 16 13 30 34 16 25
28 MIROC-ESM-CHEM 30 34 19 23 15 31 31 21 29 20 25 18 34 28 21 10 28 34 15 18 28 33 16 25
29 MPI-ESM-LR 21 31 34 25 21 32 29 24 31 11 12 33 29 21 19 16 22 21 21 10 26 31 33 27 19 13 31 34 28 23
30 MPI-ESM-MR 17 33 32 24 19 31 28 21 29 15 17 31 31 25 18 12 24 28 20 15 23 31 35 25 18 13 25 35 27 23
31 MRI-CGCM3 26 20 27 13 25 28 28 30 10 26 26 13 25 16 19 21 16 26 14 18 20 29 32 12 28 28 20 33 15 33
32 MRI-ESM1 12 9 11 14 8 16
33 NorESM1-M 33 25 20 17 24 13 30 26 10 23 23 14 30 34 25 31 33 25
34 NorESM1-ME 23 33 27 23 28 23 23 15 23 31 20 14 27 21 28 10 25 30 31 28 24 35 32 23
total selected models 7 7 8 7 8 7 8 8 11 8 7 11 8 10 9 7 8 8 10 8 8 11 8 9 8 8 9 10 9 8

30   -  selected optimal model ensemble 23 - score < 25% - 25% < score < 75% 7 - score > 75%
"very good"  "good" & "satisfactory" "unsatisfactory"

North Sea Norwegian Sea
ID CMIP5 models

Barents Sea Bering Sea Greenland Sea Labrador Sea
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